WELCOME TO MOI UNIVERSITY LIBRARY SERVICES


Please, type in the keywords, the title, subject, or author name below for your search. For detailed manual see this manual
Amazon cover image
Image from Amazon.com

Topological Methods for Differential Equations and Inclusions / by John R. Graef, Johnny Henderson and Abdelghani Ouahab.

By: Contributor(s): Material type: TextTextLanguage: English Series: Chapman & Hall/CRC Monographs and Research Notes in MathematicsPublisher: Boca Raton, FL : CRC Press, [2018]Copyright date: ©2019Edition: First editionDescription: 1 online resource (374 pages) : 1 illustrations, text file, PDFContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780429446740
Subject(s): Genre/Form: Additional physical formats: Print version: : No titleDDC classification:
  • 515/.35
LOC classification:
  • QA372
Online resources: Available additional physical forms:
  • Also available in print format.
Contents:
Introduction -- 1 Background in Multi-valued Analysis -- 2 Hausdorff-Pompeiu Metric Topology -- 3 Measurable Multifunctions -- 4 Continuous Selection Theorems -- 5 Linear Multivalued Operators -- 6 Fixed Point Theorems -- 7 Generalized Metric and Banach Spaces -- 8 Fixed Point Theorems in Vector Metric and Banach Spaces -- 9 Random fixed point theorem -- 10 Semigroups -- 11 Systems of Impulsive Differential Equations on the Half-line -- 12 Differential Inclusions -- 13 Random Systems of Differential Equations -- 14 Random Fractional Differential Equations via Hadamard Fractional Derivative -- 15 Existence Theory for Systems of Discrete Equations -- 16 Discrete Inclusions -- 17 Semilinear System of Discrete Equations -- 18 Discrete Boundary Value Problems -- 19 Appendix.
Abstract: Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Introduction -- 1 Background in Multi-valued Analysis -- 2 Hausdorff-Pompeiu Metric Topology -- 3 Measurable Multifunctions -- 4 Continuous Selection Theorems -- 5 Linear Multivalued Operators -- 6 Fixed Point Theorems -- 7 Generalized Metric and Banach Spaces -- 8 Fixed Point Theorems in Vector Metric and Banach Spaces -- 9 Random fixed point theorem -- 10 Semigroups -- 11 Systems of Impulsive Differential Equations on the Half-line -- 12 Differential Inclusions -- 13 Random Systems of Differential Equations -- 14 Random Fractional Differential Equations via Hadamard Fractional Derivative -- 15 Existence Theory for Systems of Discrete Equations -- 16 Discrete Inclusions -- 17 Semilinear System of Discrete Equations -- 18 Discrete Boundary Value Problems -- 19 Appendix.

Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.

Also available in print format.

There are no comments on this title.

to post a comment.

Copyright @ The Margaret Thatcher Library August 2023
T