TY - BOOK AU - Yang,Leping TI - On-orbit operations optimization: modeling and algorithms T2 - SpringerBriefs in Optimization, SN - 9781493908387 AV - TL 790 .O73 2014 U1 - 629.4015118 23 PY - 2014/// CY - New York, NY PB - Springer KW - Space flight KW - Mathematical models KW - Space vehicles KW - Piloting KW - Control systems KW - Mathematical optimization KW - Space Flight KW - Spacecraft KW - Mathematics KW - TECHNOLOGY & ENGINEERING KW - Engineering (General) KW - bisacsh KW - fast KW - operationeel onderzoek KW - operations research KW - bedrijfswetenschap KW - management science KW - wiskunde KW - mathematics KW - ruimtevlucht KW - space flight KW - optimalisatie KW - optimization KW - wiskundige modellen KW - mathematical models KW - toegepaste wiskunde KW - applied mathematics KW - algoritmen KW - algorithms KW - Mathematics (General) KW - Wiskunde (algemeen) N1 - Includes bibliographical references and index; Preface; Acknowledgments; Contents; List of Abbreviations; Chapter 1: Introduction; 1.1 Background; 1.1.1 On-Orbit Servicing Concept; 1.1.2 Key Technology Areas; 1.2 On-Orbit Servicing Operations; 1.3 Optimization Problem; 1.3.1 Constraints; 1.3.2 Dynamics; 1.3.3 Algorithms; 1.4 Outline of the Book; References; Chapter 2: Spacecraft Multi-Mission Planning; 2.1 Problem Formulation; 2.1.1 Planning Model; 2.1.1.1 Decision Variables; 2.1.1.2 Cost Function; 2.1.1.3 Constraints; 2.1.2 Solution Strategy; 2.2 Integer Programming Method for Mission Assignment; 2.2.1 Planning Model; 2.2.2 Algorithms; 2.2.3 Numerical Simulation2.3 HGABB for One-to-N Spacecraft Mission Planning; 2.3.1 Planning Model; 2.3.2 Algorithms; 2.3.3 Numerical Simulation; References; Chapter 3: Far-Range Orbital Maneuver Planning; 3.1 Problem Formulation; 3.1.1 Lambert Solution; 3.1.2 Multi-Impulse Trajectory Planning Model; 3.2 Genetic Algorithm for Multi-Impulse Planning; 3.2.1 Genetic Algorithm; 3.2.2 Planning Model; 3.2.3 Numerical Simulation; 3.3 Random Optimization for Multi-Impulse Planning; 3.3.1 Randomized A* Tree Expansion Algorithm; 3.3.2 Planning Model; 3.3.3 Numerical Simulation; References; Chapter 4: Proximity Relative Motion Planning4.1 Problem Formulation; 4.2 Sequential Quadratic Programming for Impulse Thrust Mode; 4.2.1 SQP Algorithm; 4.2.2 Two-Impulse Maneuver Model; 4.2.2.1 Near-Circular Reference Orbit; 4.2.2.2 Elliptical Reference Orbit; 4.2.3 Two-Impulse Trajectory Planning Model; 4.2.4 Numerical Simulation; 4.3 LP for Bang-Bang Thrust Mode; 4.3.1 LP Algorithm; 4.3.1.1 Inequality Constraint; 4.3.1.2 Nonconvex Constraint; 4.3.1.3 Free Decision Variable; 4.3.2 Discrete Dynamic Model; 4.3.3 Constraint Linearization; 4.3.3.1 State Constraint; 4.3.3.2 Control Constraint; 4.3.3.3 Safety Constraint4.3.4 Planning Model; 4.3.5 Numerical Simulation; 4.4 Pontryagin ́s Maximum Principle for Constant Low Thrust Mode; 4.4.1 Pontryagin ́s Maximum Principle; 4.4.2 Dynamic Model; 4.4.3 Planning Model; 4.4.3.1 Minimum-Time Maneuver; 4.4.3.2 Minimum-Fuel Maneuver; 4.4.4 Numerical Simulation; 4.5 hp-APM for Local Inspection Trajectory Planning; 4.5.1 Mission Formulation; 4.5.2 6-DOF Coupled Dynamic Model; 4.5.3 Planning Model; 4.5.4 hp-APM; 4.5.5 Numerical Simulation; 4.6 IAPF for Close Proximity Inspection; 4.6.1 Mission Formulation; 4.6.2 IAPF Algorithm; 4.6.3 Control Parameter Optimization4.6.4 Numerical Simulation; 4.7 IDVD for the Maneuvered Customer; 4.7.1 Mission Formulation; 4.7.2 IDVD Algorithm; 4.7.2.1 Translational Motion Planning; 4.7.2.2 Rotational Motion Planning; 4.7.3 Planning Model; 4.7.4 Numerical Simulation; References; Chapter 5: Multi-Spacecraft Coordinated Planning; 5.1 Problem Formulation; 5.1.1 Dynamic Models; 5.1.2 Mission Configurations; 5.1.3 Coordinated Planning; 5.2 Cyclic Pursuit Method; 5.2.1 Fundamentals; 5.2.2 Cyclic Pursuit Control Law; 5.2.2.1 Impulsive Thruster Control Law N2 - On-orbit operations optimization among multiple cooperative or noncooperative spacecraft, which is often challenged by tight constraints and shifting parameters, has grown to be a hot issue in recent years. The authors of this book summarize related optimization problems into four planning categories: spacecraft multi-mission planning, far-range orbital maneuver planning, proximity relative motion planning and multi-spacecraft coordinated planning. The authors then formulate models, introduce optimization methods, and investigate simulation cases that address problems in these four categories. This text will serve as a quick reference for engineers, graduate students, postgraduates in the fields of optimization research and on-orbit operation mission planning UR - http://link.springer.com/10.1007/978-1-4939-0838-7 ER -