WELCOME TO MOI UNIVERSITY LIBRARY SERVICES


Please, type in the keywords, the title, subject, or author name below for your search. For detailed manual see this manual
Amazon cover image
Image from Amazon.com

Deferred development : setting aside cells for future use in development in evolution / [edited by] Cory D. Bishop, Associate Professor in the Department of Biology at St. Francis-Xavier University, Antigonish, NS, Canada, Brian K. Hall, University Research Professor Emeritus at Dalhousie University in Halifax, NS, Canada.

Contributor(s): Material type: TextTextSeries: Publisher: Boca Raton : CRC Press, [2019]Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780429445446
  • 042944544X
  • 9780429818103
  • 0429818106
  • 9780429818127
  • 0429818122
  • 9780429818110
  • 0429818114
Subject(s): DDC classification:
  • 616.02/774 23
LOC classification:
  • QH588.S83
Online resources:
Contents:
Cover; Half Title; Series Page; Title Page; Copyright Page; Contents; Series Preface; Preface; Editors; Contributors; SECTION I: Deferred-Use Cells and Niches; Chapter 1 Deferred-Use Cells in Development and Evolution: A Life History Perspective; 1.1 Ontogeny as a Time-Structured Process of Cellular Interaction That Culminates with Reproduction; 1.2 Development: A Balancing Act between Proliferation, Pluripotency, and Function; 1.3 Deferred Development in the Context of Complex Life Cycle Evolution; 1.4 Ontologies of Deferred Development and Deferred-Use Cells
1.5 Independent Evolution of Extreme Patterns in Deferred Development1.5.1 Nemerteans; 1.5.2 Echinoderms; 1.5.3 Insects; 1.6 Summary and Conclusion; Acknowledgements; References; Chapter 2 Deferred-Use Molecules and Decision-Making in Development; 2.1 Introduction; 2.1.1 Deferred-Use Molecules Can Specify Deferred-Use Cells; 2.1.2 Deferred-Use Molecules and the First Cell Divisions of the Embryo; 2.2 An Historical Perspective; 2.3 Deferred-Use Molecules That Regulate Embryonic Development; 2.3.1 Factors That Specify the Body Axes; 2.3.2 Germ Line Determinants
2.3.3 Factors That Specify Xenopus Primary Embryonic Germ Layers2.4 Processes That Localize Deferred-Use Molecules; 2.4.1 Localization during Oogenesis; 2.4.2 Localization after Fertilization; 2.4.3 Local Activation and Silencing; 2.5 Do Deferred-Use Molecules Regulate Plant Development?; 2.6 Conclusions; Acknowledgement; References; Chapter 3 Coevolution of the Cell Cycle and Deferred-Use Cells; 3.1 The Connection of Cell Cycle and Cell Fate Decisions in Stem Cells; 3.2 Coordination of Cell Cycle and Cell Fate Decisions is Present in Many Species
3.3 The Molecular Mechanisms Coordinating the Cell Cycle with Stem Cell Self-Renewal and Differentiation3.4 Cell Division, Epigenetic Memory, and Mitotic Bookmarking; 3.5 Cell Cycle Regulation and Terminal Differentiation; 3.5.1 Cyclin-Dependent Kinases and Cyclin-Dependent Kinase Inhibitors; 3.5.2 Retinoblastoma Family Proteins; 3.6 Conclusions; References; SECTION II: Origin of Deferred-Use Cells and Their Niches: Phylogenetic Approaches; Chapter 4 The Early Evolution of Cellular Reprogramming in Animals; 4.1 Introduction; 4.2 Cnidaria; 4.3 Porifera; 4.4 Ctenophora; 4.5 Choanoflagellata
4.6 Early Animals Were Capable of Reprogramming Somatic Cells4.7 Future Directions; 4.8 Conclusions; References; Chapter 5 Macroalgae as Underexploited Model Systems for Stem Cell Research; 5.1 Introduction; 5.2 Regeneration from Cytoplasm; 5.3 Apical Cells and Meristems; 5.3.1 Apical Meristems with Apical and Sympodial Growth; 5.3.2 Intercalary Meristems of Red and Brown Algae; 5.3.3 Coenobia as Set-Aside Cells; 5.4 Regeneration from Vegetative Fragments; 5.4.1 Totipotency of Vegetative Fragments; 5.4.2 Algal Protoplasts as Analogues for Stem Cells
Summary: "This volume examines cells that are set-aside in development for use later in development or in adult life. The cells explored include stem cells, set-aside cells (in echinoderm larvae), imaginal discs in insects such as Drosophila, meristems (plants), blastemata (regeneration in amphibians), neoblasts (regeneration in planarians)"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

"This volume examines cells that are set-aside in development for use later in development or in adult life. The cells explored include stem cells, set-aside cells (in echinoderm larvae), imaginal discs in insects such as Drosophila, meristems (plants), blastemata (regeneration in amphibians), neoblasts (regeneration in planarians)"-- Provided by publisher.

Cover; Half Title; Series Page; Title Page; Copyright Page; Contents; Series Preface; Preface; Editors; Contributors; SECTION I: Deferred-Use Cells and Niches; Chapter 1 Deferred-Use Cells in Development and Evolution: A Life History Perspective; 1.1 Ontogeny as a Time-Structured Process of Cellular Interaction That Culminates with Reproduction; 1.2 Development: A Balancing Act between Proliferation, Pluripotency, and Function; 1.3 Deferred Development in the Context of Complex Life Cycle Evolution; 1.4 Ontologies of Deferred Development and Deferred-Use Cells

1.5 Independent Evolution of Extreme Patterns in Deferred Development1.5.1 Nemerteans; 1.5.2 Echinoderms; 1.5.3 Insects; 1.6 Summary and Conclusion; Acknowledgements; References; Chapter 2 Deferred-Use Molecules and Decision-Making in Development; 2.1 Introduction; 2.1.1 Deferred-Use Molecules Can Specify Deferred-Use Cells; 2.1.2 Deferred-Use Molecules and the First Cell Divisions of the Embryo; 2.2 An Historical Perspective; 2.3 Deferred-Use Molecules That Regulate Embryonic Development; 2.3.1 Factors That Specify the Body Axes; 2.3.2 Germ Line Determinants

2.3.3 Factors That Specify Xenopus Primary Embryonic Germ Layers2.4 Processes That Localize Deferred-Use Molecules; 2.4.1 Localization during Oogenesis; 2.4.2 Localization after Fertilization; 2.4.3 Local Activation and Silencing; 2.5 Do Deferred-Use Molecules Regulate Plant Development?; 2.6 Conclusions; Acknowledgement; References; Chapter 3 Coevolution of the Cell Cycle and Deferred-Use Cells; 3.1 The Connection of Cell Cycle and Cell Fate Decisions in Stem Cells; 3.2 Coordination of Cell Cycle and Cell Fate Decisions is Present in Many Species

3.3 The Molecular Mechanisms Coordinating the Cell Cycle with Stem Cell Self-Renewal and Differentiation3.4 Cell Division, Epigenetic Memory, and Mitotic Bookmarking; 3.5 Cell Cycle Regulation and Terminal Differentiation; 3.5.1 Cyclin-Dependent Kinases and Cyclin-Dependent Kinase Inhibitors; 3.5.2 Retinoblastoma Family Proteins; 3.6 Conclusions; References; SECTION II: Origin of Deferred-Use Cells and Their Niches: Phylogenetic Approaches; Chapter 4 The Early Evolution of Cellular Reprogramming in Animals; 4.1 Introduction; 4.2 Cnidaria; 4.3 Porifera; 4.4 Ctenophora; 4.5 Choanoflagellata

4.6 Early Animals Were Capable of Reprogramming Somatic Cells4.7 Future Directions; 4.8 Conclusions; References; Chapter 5 Macroalgae as Underexploited Model Systems for Stem Cell Research; 5.1 Introduction; 5.2 Regeneration from Cytoplasm; 5.3 Apical Cells and Meristems; 5.3.1 Apical Meristems with Apical and Sympodial Growth; 5.3.2 Intercalary Meristems of Red and Brown Algae; 5.3.3 Coenobia as Set-Aside Cells; 5.4 Regeneration from Vegetative Fragments; 5.4.1 Totipotency of Vegetative Fragments; 5.4.2 Algal Protoplasts as Analogues for Stem Cells

OCLC-licensed vendor bibliographic record.

There are no comments on this title.

to post a comment.

Copyright @ The Margaret Thatcher Library August 2023
T