On-orbit operations optimization : modeling and algorithms / Leping Yang, Yanwei Zhu, Xianhai Ren, Yuanwen Zhang.
Material type:
- text
- computer
- online resource
- 9781493908387
- 1493908383
- 1493908375
- 9781493908370
- Space flight -- Mathematical models
- Space vehicles -- Piloting -- Mathematical models
- Space vehicles -- Control systems -- Mathematical models
- Mathematical optimization
- Space Flight
- Spacecraft
- Mathematics
- TECHNOLOGY & ENGINEERING -- Engineering (General)
- Mathematical optimization
- Space flight -- Mathematical models
- Space vehicles -- Control systems -- Mathematical models
- Space vehicles -- Piloting -- Mathematical models
- operationeel onderzoek
- operations research
- bedrijfswetenschap
- management science
- wiskunde
- mathematics
- ruimtevlucht
- space flight
- optimalisatie
- optimization
- wiskundige modellen
- mathematical models
- toegepaste wiskunde
- applied mathematics
- algoritmen
- algorithms
- Mathematics (General)
- Wiskunde (algemeen)
- 629.4015118 23
- TL 790 .O73 2014
- Online Book
Item type | Current library | Call number | Status | Barcode | |
---|---|---|---|---|---|
Loan | Margaret Thatcher Library Second Floor | TL 790 .O73 2014 (Browse shelf(Opens below)) | Available | 23019020 |
Includes bibliographical references and index.
Preface; Acknowledgments; Contents; List of Abbreviations; Chapter 1: Introduction; 1.1 Background; 1.1.1 On-Orbit Servicing Concept; 1.1.2 Key Technology Areas; 1.2 On-Orbit Servicing Operations; 1.3 Optimization Problem; 1.3.1 Constraints; 1.3.2 Dynamics; 1.3.3 Algorithms; 1.4 Outline of the Book; References; Chapter 2: Spacecraft Multi-Mission Planning; 2.1 Problem Formulation; 2.1.1 Planning Model; 2.1.1.1 Decision Variables; 2.1.1.2 Cost Function; 2.1.1.3 Constraints; 2.1.2 Solution Strategy; 2.2 Integer Programming Method for Mission Assignment; 2.2.1 Planning Model; 2.2.2 Algorithms.
2.2.3 Numerical Simulation2.3 HGABB for One-to-N Spacecraft Mission Planning; 2.3.1 Planning Model; 2.3.2 Algorithms; 2.3.3 Numerical Simulation; References; Chapter 3: Far-Range Orbital Maneuver Planning; 3.1 Problem Formulation; 3.1.1 Lambert Solution; 3.1.2 Multi-Impulse Trajectory Planning Model; 3.2 Genetic Algorithm for Multi-Impulse Planning; 3.2.1 Genetic Algorithm; 3.2.2 Planning Model; 3.2.3 Numerical Simulation; 3.3 Random Optimization for Multi-Impulse Planning; 3.3.1 Randomized A* Tree Expansion Algorithm; 3.3.2 Planning Model; 3.3.3 Numerical Simulation; References.
Chapter 4: Proximity Relative Motion Planning4.1 Problem Formulation; 4.2 Sequential Quadratic Programming for Impulse Thrust Mode; 4.2.1 SQP Algorithm; 4.2.2 Two-Impulse Maneuver Model; 4.2.2.1 Near-Circular Reference Orbit; 4.2.2.2 Elliptical Reference Orbit; 4.2.3 Two-Impulse Trajectory Planning Model; 4.2.4 Numerical Simulation; 4.3 LP for Bang-Bang Thrust Mode; 4.3.1 LP Algorithm; 4.3.1.1 Inequality Constraint; 4.3.1.2 Nonconvex Constraint; 4.3.1.3 Free Decision Variable; 4.3.2 Discrete Dynamic Model; 4.3.3 Constraint Linearization; 4.3.3.1 State Constraint; 4.3.3.2 Control Constraint.
4.3.3.3 Safety Constraint4.3.4 Planning Model; 4.3.5 Numerical Simulation; 4.4 Pontryagin ́s Maximum Principle for Constant Low Thrust Mode; 4.4.1 Pontryagin ́s Maximum Principle; 4.4.2 Dynamic Model; 4.4.3 Planning Model; 4.4.3.1 Minimum-Time Maneuver; 4.4.3.2 Minimum-Fuel Maneuver; 4.4.4 Numerical Simulation; 4.5 hp-APM for Local Inspection Trajectory Planning; 4.5.1 Mission Formulation; 4.5.2 6-DOF Coupled Dynamic Model; 4.5.3 Planning Model; 4.5.4 hp-APM; 4.5.5 Numerical Simulation; 4.6 IAPF for Close Proximity Inspection; 4.6.1 Mission Formulation; 4.6.2 IAPF Algorithm.
4.6.3 Control Parameter Optimization4.6.4 Numerical Simulation; 4.7 IDVD for the Maneuvered Customer; 4.7.1 Mission Formulation; 4.7.2 IDVD Algorithm; 4.7.2.1 Translational Motion Planning; 4.7.2.2 Rotational Motion Planning; 4.7.3 Planning Model; 4.7.4 Numerical Simulation; References; Chapter 5: Multi-Spacecraft Coordinated Planning; 5.1 Problem Formulation; 5.1.1 Dynamic Models; 5.1.2 Mission Configurations; 5.1.3 Coordinated Planning; 5.2 Cyclic Pursuit Method; 5.2.1 Fundamentals; 5.2.2 Cyclic Pursuit Control Law; 5.2.2.1 Impulsive Thruster Control Law.
On-orbit operations optimization among multiple cooperative or noncooperative spacecraft, which is often challenged by tight constraints and shifting parameters, has grown to be a hot issue in recent years. The authors of this book summarize related optimization problems into four planning categories: spacecraft multi-mission planning, far-range orbital maneuver planning, proximity relative motion planning and multi-spacecraft coordinated planning. The authors then formulate models, introduce optimization methods, and investigate simulation cases that address problems in these four categories. This text will serve as a quick reference for engineers, graduate students, postgraduates in the fields of optimization research and on-orbit operation mission planning.
Online resource; title from PDF title page (SpringerLink, viewed June 23, 2014).
There are no comments on this title.